- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Allix, Mathieu (1)
-
Bilardello, Dario (1)
-
Bondar, Dmitry (1)
-
Canizarès, Aurèlien (1)
-
Di_Genova, Danilo (1)
-
Romano, Claudia (1)
-
Valdivia, Pedro (1)
-
Zandonà, Alessio (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract High‐temperature Raman spectroscopy offers a cost‐effective alternative to extensive infrastructure and sensitive instrumentation for investigating nanolite crystallization in undercooled volcanic melts, a key area of interest in volcanology. This study examined nanolite formation in anhydrous andesite melts in situ at high temperatures, identifying distinct Raman peaks at 310 and 670 cm−1appearing above the glass transition temperature. The initial amorphous glass remained stable up to 655°C, beyond which Fe‐Ti‐oxide nanolites progressively formed at higher temperatures, as also confirmed by complementary XRD analysis. The evolution of the 310 cm−1peak depends only on the magnitude of nanolite crystallization, while the intensity of the 670 cm−1peak is temperature‐dependent and challenging to observe above 500°C. Complementary low‐temperature rock‐magnetic analyses confirmed Fe‐Ti‐oxide nanocrystallization with nanolites around 20 nm in diameter. The study tested lasers of different wavelengths (from 355 to 514 nm) and found the green laser to be the most effective for collecting spectra at both room and high temperature. However, above 720°C, black body radiation significantly hinders Raman observation with the green laser when using a non‐confocal setup and analyzing poorly transparent samples. If higher temperature measurements are desired, switching to a confocal setup and using lower wavelength lasers should be considered. This research offers a protocol for studying nanolite formation and melt dynamics at high temperatures, providing a foundation for future studies of volcanic processes.more » « less
An official website of the United States government
